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The model of a Winkler foundation, which establishes a lin-
ear algebraic relationship between the normal displacement of the
surface of a body and the contact pressure, is widely used in engi-
neering practice to calculate the bending of different structural
components (beams and plates) on a deformable foundation.1 The
Winkler model can also be used to describe the deformation of dif-
ferent kinds of surface structures which are encountered at friction

joints. A thin elastic layer2 and the surface roughness of bodies3,4

are examples of such structures and, if the main body (the under-
lying material) is sufficiently rigid, such that its deformation can
be neglected, the Winkler model will determine the dependence
of the deformation displacement of the surface of the body on the
contact pressure. The simplicity of this model enables us to obtain
exact solutions of the corresponding wear-contest problems.

1. Formulation of the problem

We consider a deformable foundation with a plane surface. With
it, we associate a system of coordinates Oxyz, in which the x and
z axes coincide with the surface of the base, while the y axis is
directed along the outward normal to it (Fig. 1). We will assume that
an absolutely rigid punch, the generatrix of the surface of which is
parallel to the z axis, is indented into the foundation translation-
ally along the y axis. We shall represent the contact area between
the punch and the foundation by the segment [−a, b] of the x axis,
where a > 0, b > 0. Simultaneously, the punch slides over the founda-
tion along the z axis at a velocity � which is constant in magnitude,
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as a result of which the wear of the punch occurs. We shall denote
the corresponding change in the quantities with time by the argu-
ment t, taking the instant t = 0 as the start of the wear. The initial
form of the punch is specified by a smooth, monotonically decreas-
ing (increasing) function g(x), g(0) = 0 when x < 0, (x > 0). We will
assume that, in the case of an unchanged sliding velocity �, the rate
of linear wear W of the punch is determined by the value p = −�y|y=0
of the contact pressure according to the wear law

(1.1)
where F(p) is a known function for which it is assumed that

(1.2)

(1.3)

and that F(p) satisfies the lipschits condition

(1.4)

where F1M is a known constant. It is obvious that, in the case of
condition (1.2), the function W(x, t) satisfying equalities (1.1) is non-
negative.

Suppose that, due to wear of the punch, the size of the contact
area increases smoothly over a certain time interval [0, t*], t* > 0:

(1.5)

which enables us to determine the rate of increase in a: V(t) ≡ a′(t).
Assumptions (1.5) also ensure the existence of a monotonically
increasing function t(a) which is the inverse of a(t). This enables
us to use the dimension a of the contact area as the time parameter
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Fig. 1.

instead of t so that

The argument a of the function b(a) will henceforth be omitted
wherever it cannot give rise to any misunderstanding.

Well-known inverse function theorems5 with assumptions (1.5)
enable us to establish the following properties of the functions t(a)
and V(a)

(1.6)

(1.7)

Here and henceforth, a0 = a(0), b0 = b(0) and a* = a(t*), b* = b(t*).
Changing from the variable t to the variable a, the form

(1.8)

can be attributed to the wear law (1.1) using the rule for the differ-
entiation of a complex function.

We denote the vertical displacement (along the y axis) of the
surface of the foundation as the result of its deformation by uy so
that, according to the Winkler model,

Substituting this expression into the condition for the punch and
the foundation to be in contact we obtain the equality

(1.9)
where the quantity � defines the vertical displacement of the
punch. The condition that the contact pressure at the ends of the
contact area is equal to zero and the condition for the equilibrium
of the punch

(1.10)

(1.11)

also hold, where Q is the constant vertical load per unit length of
the punch along the z axis.

With the above assumptions, the dimensions a and b of the con-
tact area and the displacement of the punch � turn out to be related
to one another by the equalities

(1.12)

Actually, outside the contact area when a and b increase, there is no
wear and, according to the Winkler model, there is also no deforma-
tion displacement uy of the surface of the foundation. This enables
us to write the relation
atics and Mechanics 72 (2008) 66–72 67

in which d is the gap between the surfaces of the punch and the
foundation. By virtue of the continuity of the function g(x), equal-
ities (1.12) follow from the last relation, since d(x, a) → 0 when
x → −a − 0 or x → b + 0.

If the function x = g−1
+ (y), which is the inverse of the function

y = g+(x) ≡ g(x)|x ∈ [b0,b∗], is introduced into the treatment, then the
first equality of (1.12) enables us to determine the relation b(a) in
terms of the known shape of the punch:

(1.13)

We now introduce the set �* of points x, a into the treatment. The
abscissa x of these points lies within the contact area [−a, b(a)] for
any a ∈ [a0, a*]. Relations (1.13) enable us to write

(1.14)

where the function �(x) determines the distance from the x-axis to
the lower boundary of the set �* and has the form

The function a = b−1(x) is the inverse of the known function x = b(a)
of the form (1.13). By virtue of relations (1.13), �(x) ∈ C[−a*, b*].

It is required to find the functions p(x, a), W(x, a), �(a), V(a) which
satisfy Eqs. (1.8)–(1.11) and relation (1.7) when x, a ∈ �*.

2. Solution of the problem

We shall seek the contact pressure p(x, a) in the space of func-
tions which are continuous in the set �*:

(2.1)

We define the desired rate of increase of a of the contact area by
the expression
(2.2)

Expression (2.2) is formally obtained if the contact condition (1.9)
is initially integrated over x ∈ [−a, b] and the result is then differen-
tiated with respect to a while, at the same time, taking account of
the wear law (1.8) and the equilibrium condition (1.11). The follow-
ing lemma holds for the integral on the right-hand side of equality
(2.2).

Lemma 1. Suppose M is the set of bounded functions ϕ(x) which are
continuous almost everywhere in the interval [−a, b] and satisfy the
condition

(2.3)

where Q is a certain constant, and suppose the function F(S) is given
such that F′′(S) ∈ C′ (−∞, ∞).
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Then,

where S ∈ (−∞, ∞) and ϕ̄ = Q/(a + b) is the mean value of the func-
tion ϕ(x) ∈ M.

Proof. Using Taylor’s formula, we write the equality

(2.4)

in which R(x) = F′(�1(x))�2(x)/2, where the values of �1(x) lie
between ϕ̄ and ϕ(x) = ϕ̄ + �(x). Integration of equality (2.4) over
the [−a, b] completes the proof.

The lemma which has been proved enables us to formulate the
following assertion.

Assertion 1. If the functions g(x) and F(p) satisfy the conditions
stipulated above and p(x,a) satisfies the equilibrium condition (1.11)
and possesses the continuity property (2.1), then relation (1.7) is
satisfied in the case of a function V(a) of the form (2.2), that is,

(2.5)

where

(Vm is a known quantity).

Proof. The integral on the right-hand side of equality (2.2) is con-
tinuous over a ∈ [a0, a*], which is ensured by the continuity of the
functions F(p), b(a) (see properties (1.3), (1.13)) and condition (2.1).5

With the constraints imposed on the function g(x), this enables us
to establish the continuity with respect to a ∈ [a0, a*] of the whole
of expression (2.2) for Va. The existence and positiveness of the
quantity Vm results from properties (1.2) and (1.13) of the functions
F(p), b(a) and, also, from the inequality g(−a) < 0. The right-hand
inequality (2.5) can be established if account is taken of the fact
that, in conditions (1.3) and (1.11), the integral on the right-hand
side of equality (2.2) reaches a minimum according to Lemma 1

when p(x, a) = Q/(2l(a)).

Assertion 1 enables us to establish a number of relations
between the required functions. First of all, by virtue of relations
(2.5) and, also, properties (1.3) and (2.1), we have: V−1(a)F(p(x,
a)) ∈ C(�*), which enables us to integrate the wear law (1.8) with
respect to a and obtain the equality5

(2.6)

where, by virtue of the continuity of the function �(x),

(2.7)

Next, we integrate the contact condition (1.9) over x ∈ [−a, b] and
replace the resulting integral of the contact pressure with the load
Q according to the equilibrium condition (1.11). From the equality
obtained in this way, it is easy to arrive at the following expression

(2.8)
atics and Mechanics 72 (2008) 66–72

We finally obtain the equation for p(x, a). Expression (2.8) for
�(a) is now substituted into the equality (1.9) and the contact con-
dition is written in the form

(2.9)

Eliminating V(a) and W(x, a) using expressions (2.2) and (2.6), the
following integral equation for the contact pressure can be obtained

(2.10)

where the operator has the form

(2.11)

(2.12)

(2.13)

Note that the function �(a) can also be eliminated from equality
(1.9) using relation (1.12) to obtain the contact condition in the form

(2.14)

The contact pressure p(x, a) on the left-hand side of this equal-
ity satisfies condition (1.10) by virtue of equalities (1.12) and (2.7)
whereas the contact condition as written in (2.9) ensures that the
equilibrium condition (1.11) is satisfied for p(x, a), as can be shown
by integrating equality (2.9) over x ∈ [−a, b].

Both ways of writing the contact condition (2.9) and (2.14) will
be used below.

The well-known the properties of the continuity of integrals5

depending on a parameter enable us to prove the following asser-
tion.

Assertion 2. In the case of the constraints which have been
imposed above on the functions g(x) and F(p), the operator maps

the space C(�*) into itself:

Before proceeding to find the solution of Eq. (2.10), we will make
a number of estimates. Taking account of the non-negativity of the
wear W(x, a) and using the contact condition in the form of (2.14),
we write

whence, when F(p) increases (see conditions (1.2) and (1.3)), we
have the inequality

Using this inequality and, also, inequalities (2.5) from expression
(2.6) and taking account of the inequality a − �(x) ≤ a* − a0, we
obtain the estimate

(2.15)
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We now find the solution p(x, a) of Eq. (2.10) using the method
of successive approximations.6 We just show that the desired solu-
tion is the limit of the functional sequence {pk(x, a)} (k = 1, 2,. . .) of
successive approximations

the existence of which is ensured by Assertion 2 and which, when
account is taken of the definition (2.11) of the operator , can be
represented in the form

(2.16)

denotes the i-th action of the operator . The following prop-
erties of the elements of the sequence {pk(x, a)} follow from
Assertions 1 and 2, definition (2.11) of the operator and by virtue
of the continuity on �* of the function z(x, a) in the form (2.13):

(2.17)

We now take a certain a� ∈ (a0, a*] and define the set

By a suitable choice of the quantity a�, it is possible to satisfy the
inequalities

(2.18)

where F+ is a specified constant. Actually, we make use of the usual
norm6

and, on the basis of properties (1.2) and (1.4) of the relation F(p),
we write

(2.19)

If we now put

(2.20)
then inequality (2.19), when account is taken of definition (2.12) of
the operator , enables us to obtain another inequality, namely,

and, using this, from expression (2.16) we obtain the
relation

When account is taken of these relations, substitution of the ele-
ment pk(x, a), instead of �(x, a), into inequality (2.19) gives

(2.21)

where, as follows from definition (2.13) of the function z(x, a),

(2.22)

and the quantities gM and WM are defined above. Estimate (2.18) is
obtained from inequalities (2.21) and (2.22) and, at the same time,

(2.23)
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We will now show that the sequence {pk(x, a)} possesses a fun-
damental property.6 Property (1.4) of the function F(p) and, also,
the definition (2.2) of the operator enable us to write the fol-
lowing inequality for arbitrary elements pi(x, a) and pj(x, a) of this
sequence:

Using these inequalities, definition (2.11) of the operator as well
as estimates (2.17) and (2.18) obtained above, it is possible to arrive
at the following result

(2.24)

The quantity �, which is expressed by formula (2.20), is chosen
such that r ∈ (0, 1). In this case, it is known6 that inequality (2.24)
will be a sufficient condition for the sequence {pk(x, a)} to be funda-
mental in the space C(�). A simple analysis, which takes account of
expression (2.23) for F+, shows that relation r ∈ (0, 1) holds if � ∈ (0,
�	), where

Note that (0, �	) ⊂ (0, 1) and the inclusion � ∈ (0, �	) therefore
ensures that the constraint � ∈ (0, 1) imposed above is satisfied. It
follows from definition (2.20) of the quantity � that the condition
� ∈ (0, �	) can be satisfied if the difference a� − a0 is taken to be
sufficiently small:

Consequently, if the step �a is determined from the condition

(2.25)

and we put

(2.26)

then the condition � ∈ (0, �	) and, consequently, also the relation
r ∈ (0, 1) will be satisfied and the sequence {pk(x, a)} will be funda-

mental in C(�).

It is well-known that the space C(�) is complete7 and the fun-
damental sequence {pk(x, a)} therefore converges according to the
norm to a certain function p(x, a) ∈ C(�): ||p − pk|| → 0, k → ∞,6

where, by virtue of the definition of the norm which is used, this
convergence will be pointwise. Taking these facts and expression
(2.16) for pk(x, a) into account, we write

(2.27)

By virtue of the second equality of (2.17), the limiting function
p(x, a) of the form of (2.27) satisfies the equilibrium condition (1.11)
in the interval [a0, a�]. This enables us one to use Assertion 1 and
to obtain an inequality analogous to (2.24) for the function p(x, a)
which has been found

which means in the case of condition (2.27) that
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This last relation, together with relation (2.27), enables us to write
the equalities

indicating that a function p(x, a) of the form of (2.27) satisfies Eq.
(2.10) when x, a ∈ �, being its exact solution.

If relations (2.25) and (2.26) allow of the equality a� = a*, then
� = �* and the function p(x, a) obtained using formula (2.27) is a
solution of Eq. (2.10) in the whole of the set �*. Otherwise, that is,
if a� < a*, we put a1 = a�, �1 = �|a�=a1 and continue the solution p(x,
a) which has been found from the set �1 to the set �*, taking the
dimension a1 and the shape of the punch

(2.28)

as the initial values for the process of wear of the punch when a ≥ a1.
A similar technique is used for the continuation of the solution of
differential equations.8

It can be verified that all the conditions previously imposed on
the function g(x) are satisfied in the case of a punch of the form
g̃(x). Furthermore, the function z̃(x, a), which is defined in terms
of g̃(x) by equality (2.13), satisfies inequality (2.22) by virtue of the
estimate (2.15) for W(x, a) and definition (2.28). All this enables
us to repeat the operations of this section, using g̃(x) as the initial
form of the punch. We separately note that, when g(x) is replaced
by g̃(x), the quantities Vm, gM, WM and 
 do not change according to
their definitions and the step �a therefore remains as before (see
condition (2.25)). Hence, it is possible to construct a solution p(x,
a) of Eq. (2.10) which is continuous in the set

Using definition (2.28) of the form g̃(x) of the punch, it is easy
to establish that the solutions p(x, a) ∈ (�1) and p(x, a) ∈ (�2) of Eq.
(2.10) which have been found are identical in the line of separation
a = a1 of the sets �1 and �2, constituting a continuous solution of
this equation in the set �1 ∪ �2.

If, as before, the quantity a2 = a1 + �a is less than a*, then, by
continuing the solution p(x, a) in the way which has been indicated
to values a ≥ a2, it is possible, after a finite number of steps �a with
respect to a to obtain the required solution p(x, a) ∈ C(�*) of Eq.
(2.10). This solution, by means of equalities (2.2), (2.6) and (2.8),
determines the functions V(a), W(x, a) and �(a) which, together
with p(x, a), satisfy Eqs. (1.8)–(1.11) and relation (1.7) on the set �*.
If necessary, it is possible to change from the time parameter
a to the real time t. For this purpose, it is sufficient, having inte-
grated equality (1.6) with respect to a, to obtain the monotonically
increasing relation

and to determine the function a(t), which is the inverse of it. When
substituted into the expressions which have been found for b(a),
�(a), V(a), p(x, a), this function gives the relations b(t), �(t), V(t),
p(x, t), W(x, t). The functions a(t) and b(t) defined in this way satisfy
assumptions (1.5) made at the beginning of this section. This follows
from relations (1.6), (1.7) and (1.13) and the known properties of an
inverse function.5

3. The differential equation of wear

The solution p(x, a) ∈ C(�*) of the wear-contact problem
obtained above can be further investigated using the differential
equation which follows from the basic equations of the problem.
atics and Mechanics 72 (2008) 66–72

Actually, in the case of the constraints imposed above on the func-
tions g(x), F(p) and relations (2.1) and (2.5), the derivatives g′(−a),
∂W(x, a)/∂a are continuous in �* and differentiation of the con-
tact condition (2.14) with respect to a, taking account of the wear
law (1.8), therefore enables us to arrive at the following differential
equation

(3.1)

where

(3.2)

and the second form of writing the right-hand side of equality (3.1)
is obtained using expression (2.2) for V(a).

The initial conditions for (3.1) are specified on the lower bound-
ary of the set �*, which is described by the equation a = �(x) (see,
definition (1.14)). According to equalities (1.10), the contact pres-
sure is equal to zero in the segments x ∈ [−a*, −a0] and x ∈ [b0, b*]
of this boundary whereas the initial contact pressure distribution

holds in the interval x ∈ [−a0, b0]. This distribution is obtained
by putting a = a0 and W(x, a0) ≡ 0 in contact condition (2.14). We
shall assume that the distribution p0(x) is non-negative: p0(x) ∈ 0,
x ∈ [−a0, b0] which is ensured by the inequality g(x) ≤ g(−a0) = g(b0).
It can be shown that integral equation (2.10) and deferential
equation (3.1) with the specified initial condition are mutually
equivalent.

Using (3.1) when p0(x) ≥ 0, it is possible to establish the property
of the non-negativity of the contact pressure corresponding to its
physical meaning

(3.3)

To do this, the following lemma is required.

Lemma 2. Suppose a function �(s) ∈ C[s1, s2] is given which satisfies
the differential equation

(3.4)

where
(3.5)

�(s) is an arbitrary function defined in the interval s1, s2, s1 and s2 are
certain specified quantities and s1 < s2, and that we have �(s′) ≥ 0 for
a certain s′ ∈ [s1, s2]. Then, �(s) ≥ 0, s ∈ [s′, s2].

Proof. We will assume that the opposite holds and, in fact, sup-
pose that a s̃ ∈ (s′, s2] exists such that

(3.6)

When �(s) ∈ C(s1, s2), according to the theorem on the stability
of the sign of a continuous function,5 the existence of a quantity
� > 0, which determines the neighbourhood of the point s̃ where
the function �(s) is negative, i.e.,

(3.7)

follows from inequality (3.6).

The values of �, which ensure that inequality (3.7) is satisfied,
from a non-empty set {�}, with an upper bound �M = s̃ − s′, since
�(s) ≥ 0. Consequently, an exact upper bound �̄ = sup{�} exists for
this set.5 By definition, �̄ ≥ � ∈ {�} and, also, a �′ ∈ {�} is obtained for
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Fig. 2.

any � > 0 such that �′ > �̄ − ε, where, according to inequality (3.7),
the last notation means that

On the basis of these results, the equality �(s0) = 0 can be estab-
lished and, when this equality is taken into account and also the fact
that the magnitude of � can be as small as desired, we can write

In the case of condition (3.5), this last inequality gives

Hence, according to Eq. (3.4), we have

The derivative ϕ̇(s) on the left-hand side of the last equality is
continuous in the interval [s0, s̃] since, according to condition (3.5),
the function f(s) possesses the same property. When account is
taken of condition (3.5) and the equality �(s0) = 0, which has been
established above, we can write

which contradicts assumption (3.6).
The term [−g′(−a)] which is present in (3.1) is positive, the func-

tion F(p) satisfies condition (1.2) and the function p(x, a) takes
non-negative values on the lower boundary a = �(c) of the set �*.
All of this enables us to use Lemma 2 and to establish inequalities
(3.3).

Equation (3.1) with the second expression for the right-hand
side also determines the sign of the derivative ∂p(x, a)/∂a:

(3.8)

The quantity F̄(a) of the form of (3.2) is the mean value of the func-

tion F(p(x, a)) over the contact area. Relation (3.8) enables us one
to carry out a qualitative analysis of the behaviour of the contact
pressure during the wear process.

Example. Suppose the function F (p) has the form shown in Fig. 2,
where the parameters p�, F� determine its extremum point. Such
a dependence of the rate of wear on the contact pressure holds,
for example, in the abrasive wear of polymers.9 In the case of a
weak load, when all the values of p(x, a) are located on the ris-
ing part of the F (p) graph, according to condition (3.8) he contact
pressure p(x, a) falls (rises) during the course of the wear when
F(p(x, a)) > F̄(a) F(p(x, a)) < F̄(a), as a consequence of which the
function F(p(x, a)) has a tendency to be equalized along the length
of the contact ara. Correspondingly, the contact pressure also tends
to a constant value ps(a), where, by virtue of the equilibrium con-
dition (1.11), ps(a) = Q/(a + b). In the case of heavy loading when, for
certain x ∈ [−a, b], the values of p(x, a) are located on the falling part
of the F (p) graph and, for them, F(p(x, a)) < F̄(a), the contact pres-
sure p(x, a) increases during the wear process for these values of x
according to equality (3.8), and the values of F(p(x, a)) correspond-
ingly decrease, and the latter leads to a further increase in p(x, a)
(see, Eq. (3.1)). Hence, in the case of a heavy load, an unbounded
Fig. 3.

increase in the contact pressure is possible with time in the most
loaded part of the contact area. In the remaining part of the contact
area, the function p(x, a) will, as before, tend to adopt a constant
value. Note that, in the case of a linear wear law, equalization of the
contact pressure curve with time is well known.2

In order to check the results of the above qualitative analysis,
a numerical solution of Eq. (3.1) was constructed for the case of a
symmetric parabolic punch g(x) = x2/(2R). The quantity

which characterizes the maximum wear over the contact area, was
used to describe the extent of the wear. The calculated dimensional
contact pressure curves p̃ = AR−1p, corresponding to different val-
ues of W̃M for two different loads Q̃ = AR−2Q , are shown in Fig. 3.
The data presented are in agreement with the results of the quali-
tative analysis of the behaviour of the contact pressure during the
course of the wear.

4. Conclusions
1. Integral equation (2.10) and differential equation (1.3) of the
wear contact problem for a Winkler foundation have been
obtained in the case of a non-linear wear law.

2. A successive approximation procedure has been proposed which
enables us to find the exact solution of the integral equation in
the space of continuous functions. To do this, a lower estimate
was obtained for the rate of increase in the dimension of the
contact area.

3. The property of the non-negativity of the contact pressure when
its initial values are non-negative has been established on the
basis of the differential equation.

4. It has been shown by qualitative analysis and calculations that
the character of the non-linearity of the wear law can have a
substantial effect on the behaviour of the contact pressure during
the course of the wear.
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